5,919 research outputs found

    Nonparametric Rank Tests for Non-stationary Panels

    Get PDF
    This study develops new rank tests for panels that include panel unit root tests as a special case. The tests are unusual in that they can accommodate very general forms of both serial and cross-sectional dependence, including cross-unit cointegration, without the need to specify the form of dependence or estimate nuisance parameters associated with the dependence. The tests retain high power in small samples, and in contrast to other tests that accommodate cross-sectional dependence, the limiting distributions are valid for panels with finite cross-sectional dimensions.Nonparametric rank tests, unit roots, cointegration, cross-sectional dependence

    Trait-based diversification shifts reflect differential extinction among fossil taxa

    Get PDF
    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Traitbased diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if traitdependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clearwhether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models

    Inferring and Testing Hypotheses of Cladistic Character Dependence by Using Character Compatibility

    Get PDF
    The notion that two characters evolve independently is of interest for two reasons. First, theories of biological integration often predict that change in one character requires complementary change in another. Second, character independence is a basic assumption of most phylogenetic inference methods, and dependent characters might confound attempts at phylogenetic inference. Previously proposed tests of correlated character evolution require a model phylogeny and therefore assume that nonphylogenetic correlation has a negligible effect on initial tree construction. This paper develops “tree-free” methods for testing the independence of cladistic characters. These methods can test the character independence model as a hypothesis before phylogeny reconstruction, or can be used simply to test for correlated evolution. We first develop an approach for visualizing suites of correlated characters by using character compatibility. Two characters are compatible if they can be used to construct a tree without homoplasy. The approach is based on the examination of mutual compatibilities between characters. The number of times two characters i and j share compatibility with a third character is calculated, and a pairwise shared compatibility matrix is constructed. From this matrix, an association matrix analogous to a dissimilarity matrix is derived. Eigenvector analyses of this association matrix reveal suites of characters with similar compatibility patterns. A priori character subsets can be tested for significant correlation on these axes. Monte Carlo tests are performed to determine the expected distribution of mutual compatibilities, given various criteria from the original data set. These simulated distributions are then used to test whether the observed amounts of nonphylogenetic correlation in character suites can be attributed to chance alone. We have applied these methods to published morphological data for caecilian amphibians. The analyses corroborate instances of dependent evolution hypothesized by previous workers and also identify novel partitions. Phylogenetic analysis is performed after reducing correlated suites to single characters. The resulting cladogram has greater topological resolution and implies appreciably less change among the remaining characters than does a tree derived from the raw data matrix

    Response of beta diversity to pulses of Ordovician-Silurian mass extinction

    Get PDF
    Ecologists are increasingly using the fossil record of mass extinction to build predictive models for the ongoing biodiversity crisis. During mass extinctions, major depletions in global (i.e., gamma) diversity may reflect decrease in alpha diversity (i.e., local assemblages support fewer taxa), and/or decrease in beta diversity (such that similar pools of taxa are common to a greater number of local areas). Contrasting the effects of extinction on alpha and beta diversity is therefore central to understanding how global richness becomes depleted over these critical events. Here we investigate the spatial effects of mass extinction by examining changes in alpha, beta, and gamma diversity in brachiopod communities over both pulses of Ordovician-Silurian extinction (;445.2 and ;438.8 million years ago), which had dramatically different causal mechanisms. We furthermore reconstruct geographic range sizes for brachiopod genera to test competing models for drivers of beta diversity change. We find that: (1) alpha and beta diversity respond differently to extinction; (2) these responses differ between pulses of extinction; (3) changes in beta diversity associated with extinction are accompanied by changes in geographic range size; and (4) changes in global beta diversity were driven by the extinction of taxa with statistically small and large ranges, rather than range expansion/contraction in taxa that survive into the aftermath. A symptom of ongoing biotic crisis may therefore be the extinction of specific narrow- or wide-ranging taxa, rather than the global proliferation of opportunistic and ‘‘disaster’’ forms. In addition, our results illustrate that changes in beta diversity on these longer timescales may largely be dictated by emplacement and removal of barriers to dispersal. Lastly, this study reinforces the utility of the fossil record in addressing questions surrounding the role of global-scale processes (such as mass extinctions) in sculpting and assembling regional biotas

    Trait-based diversification shifts reflect differential extinction among fossil taxa

    Get PDF
    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Traitbased diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if traitdependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clearwhether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models

    Permian trilobites and the applicability of the “living fossil” concept to extinct clades

    Get PDF
    Some taxa occupy our imaginations as “living fossils” because they were known from the fossil record before being discovered alive today. Other taxa are considered “living fossils” because modern relatives bear a strong morphological resemblance to fossil relatives, or because they occupy a contracted geographic range or have less diversity now than in the past, or because they represent phylogenetic diversity that requires conservation. A characterizing feature of living fossils–and thus an implicit assumption of all criteria–is that the “living fossil” of interest is extant. However, the general research questions that “living fossils” inspire–Why do rates of evolution vary across organisms, across traits, and across time? Why do some clades decline in diversity over extended periods?–may be applied to any clade, including completely extinct clades. We propose that there is nothing special about “now” when it comes to pursuing these questions and that it is unnecessarily limiting to restrict research programs to clades for which an extant member meets some conception of the “living fossil” moniker. To this end, we investigate the extent to which Permian trilobites might resemble “living fossils,” albeit from the perspective of 253 million years ago, when the last trilobites were still alive. We do so by comparing the taxonomic diversity, geographic range, and morphological disparity of trilobites living in the Permian to earlier time periods. We find that Permian trilobites meet most definitions of living fossils, although our assessment of morphological change and character retention depend on taxonomic scale

    Taxing E-Commerce: The Landscape of Internet Taxation

    Get PDF

    Mononuclear Transition Metal Complexes of 7-Nitro-1,3,5-Triazaadamantane

    Get PDF
    This is the peer reviewed version of the following article: Wagner, G., Horton, P. N., & Coles, S. J. (2016). Mononuclear Transition Metal Complexes of 7-Nitro-1,3,5-Triazaadamantane. ChemistrySelect, 1(8), 1548-1555. DOI: 10.1002/slct.201600502, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/slct.201600502/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingComplexes of the type [MCl2(7-nitro-1,3,5-triaza-adamantane)2] (M = Zn(II), Pd(II), Pt(II)) and [MCl2(H2O)2(7-nitro-1,3,5-triazaadamantane) 2] (M = Mn (II), Co(II), Ni(II)) have been prepared and their structures have been analysed by X-ray crystallography, elemental analysis, IR and solid state 13C and 15N NMR spectroscopy, supported by density functional theory/ gauge independent atomic orbital (DFT/GIAO) calculations. In each case, 7-nitro-1,3,5-triazaadamantane acts as a mono-dentate ligand and binds to one metal centre only, in spite of the presence of three equivalent amino nitrogens. In the Co(II) and Ni(II) complexes, a two-dimensional intermolecular hydrogen bonding network between the aqua- and the chloro ligands is established. The uncoordinated amines of the 7-nitro-1,3,5-triaza- adamantane are not involved in any H-bonding, as a result of the exceptionally low basicity of this compound

    Patient and Physician Perceptions of Dimensions of Necessity of Medical Utilization

    Get PDF
    The goal of this research was to understand better the perspectives held by physicians and patients regarding what factors determine the appropriateness of medical visits. We also wished to create a convenient measure of those perspectives. In our first study, we conducted focus groups separately composed of 22 physicians and 16 patients to determine their respective views. In our second study, a 40-item measure derived from Study 1 themes was administered to a sample of 202 patients. Study 1 identified 20 themes, collapsing into 6 dimensions. Physicians held views that some patients were manipulative when seeking medical care. Study 2 revealed factors of Symptom Experience and Doctor Expertise. The two studies revealed that the perception of medical utilization varies between patients and physicians, but both groups share many similar beliefs
    corecore